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1. Introduction

Condensation dehumidification and desiccant dehumidification 

mainly comprises the dehumidification processes. The former has 

been largely applied in various types of vapor compression cooling 

systems driven by compressors. Air is cooled to dew point 

temperature before it is condensed via an evaporator removing 

moisture (vapor) content in the air. Sensible and latent heat are 

dealt with in the evaporator resulting in a lower evaporation 

temperature (~ 5 °C), which enables pleasant air temperature and 

relative humidity[1]. Although, the technology is simple in its 

operation and has been widely used, there have been a number of 

issues concerning sustainability arising from the perspective of 

energy and environmental matters. Although the technology has 

been developed continuously over the years, the inherent 

difficulties are yet to be resolved completely. Desiccant 

dehumidification, which separates latent cooling from sensible 

cooling in air handling units (AHUs) in buildings, is one potential 

remedy to reduce the abovementioned issues.

Meanwhile the dehumidification technology, based on a 
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desiccant-coated heat exchanger (DCHX), has gained increasing 

interest due to its reliable and eco-friendly nature around the 

world, especially in humid regions.  DCHX is different from 

conventional vapor-compression technology based refrigeration 

cooling systems with energy consuming compressors, it is capable 

of delivering dehumidication and cooling when applied to a direct 

or indirect evaporative cooling systems. Dropping the air 

temperature below its dew point is not required for the removal of 

moisture content in the air as practiced in the conventional vapor 

compression cooling cycles[2-3]. DCHX has a broad range of 

applications where humidity control, energy efficiency, and 

moisture removal are crucial considerations such as HVAC 

systems, industrial drying process, energy recovery systems and 

data centers. 

There are currently many studies performed to develop 

theoretical models capable of predicting the performance of the 

DCHX via a white-box model applying the physical principles 

as appropriate. This, however, is not simple as detailed 

information on the DCHX is required such as thermal and 

physical properties of desiccant as well as technical details of the 

heat exchanger[4-7]. In this studying non-linear cases of a 

desiccant system, application of the artificial neural network 
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A B S T R A C T K E Y W O R D
Purpose:  This study has been carried out to assess the performance of a desiccant-coated heat exchanger 

(DCHX) by the application of an artificial neural network (ANN) model, where its performance was evaluated via 
water vapor removal capacity and coefficient of performance (COP). Method: The DCHX was prepared by coating
the surface of finned tubes using adsorbent powder.  Each tube had the dimensions of 200 mm x 150 mm x 22 mm 
and 0.1 mm thick with a  spacing of 1.5 mm. Four tubes pass through a fin, where a tube of 9.5 mm in diameter is 
used. As for the input data of the ANN, different conditions (parameters) were used for air and water streams. 
Especially, two different regeneration temperatures (50oC, 80oC) were tested to explore its effect on the 
development of ANN model. The ANN model was trained by employing 162 data samples from the previous 
experimental study. To study feed forward and backward propagation, MATLAB code was extensively used as 
appropriate. For the training of the ANN model, three-fourths of the experimental data was used and the remaining
was used for its test and validation. Result: The results show the maximum difference of 0.05 for COP and 0.01 for
water vapor removal rate between the ANN model and experimental data.  Also, the difference in the regeneration
temperature has little effect in affecting the development of the ANN model. This indicates the possible 
development of a universal ANN  model applicable to different operating conditions. The present analysis could be 
further extended to explore the performance of the DCHX in the context of the 2nd law of thermodynamics.
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(ANN) is an effective approach for modeling the physical 

phenomenon of adsorption-based dehumidification and 

exploring its operational characteristics in light of input and 

output parameters. Desiccant coated heat exchangers involve 

intricate interactions between multiple variables, and ANNs 

excel at learning and representing these nonlinear relationships. 

In contrast, white-box models, such as analytical or empirical 

equations, may struggle to accurately capture and model these 

complex interactions.

These parameters can be ultimately construed in important 

thermodynamic terms representing the efficiency of a thermal 

system such as COP as they carry the pieces of practical 

information reflecting its operational characteristics. Here, the 

efficiency of the DCHX is represented by COP as it denotes the 

functional robustness of a thermal system requiring work to 

accomplish the objective of operating a thermal system. 

The water removal rate of the DCHX is also deal with in the 

present analysis as it gives the tangible information concerning 

the necessity of operating a thermal system (the DCHX) in 

practical terms.

Of course, the analysis can be made from the perspective of the 

1st and 2nd law of thermodyanmics depending on the nature of the 

input and output data with available parametric distributions. 

To develop an ANN model, an arrangement has to be made 

concerning the structure and values for a set of hidden neurons 

and their corresponding layers such that they represent the 

complicated interactions between input and output parameters. A 

complex task can be effectively treated by the application of the 

ANN approach delivering a simple solution[8-10]. This, 

however, requires much work to obtain sets of experimental data 

spanning over a wide range of input parameters as they are used 

for the training an ANN model determining its usefulness. In the 

present paper, an extensive study has been carried out to explore 

the development of a proper model to assess the performance of a 

DCHX based dehumidification system where an artificial neural 

network is developed with a simple set of input-output 

parameters. 

2. Operation of a Desiccant Coated Heat 

Exchanger (DCHX)

The removal of moisture from highly humid air (relative 

humidity of over 90%) can be effectively achieved by  a 

desiccant-coated heat exchangers (DCHX), which uses 

adsorbents such as silica gel, Zeolite, and MOF. The DCHX 

studied in this work was prepared by using adsorbent powder to 

coat a finned tube heat exchanger. 

The finned tube heat exchanger has the dimensions of 200 

mm x 150 mm x 22 mm and the fin thickness is 0.1 mm with a  

spacing of 1.5 mm. Four tubes pass through a fin, where a tube 

of 9.5 mm in diameter is used. As shown in Fig. 1., two different 

modes are alternatively used to operate the DCHX: 

dehumidification (adsorption) mode, and regeneration 

(desorption) mode. 

When the DCHX is operated in the dehumidification mode, 

adsorption heat is removed by the cooling water supplied through 

the tubes maintaining the desiccant layer at a lower temperature 

and thus enabling the highest uptake. Conversely, in the 

regeneration (desorption) mode, heat is provided to the dessicant 

layer by running through the tubes to remove the water vapor 

adsorbed in the previous process of adsorption. Each process 

continues to take place alternatively until there is no more uptake 

of moisture (vapor content in air) by adsorbent at a given 

temperature and vapor pressure.  

Fig. 1. Operation of a desiccant-coated heat exchanger (DCHX) for 
dehumidication: (a) dehumidication (absorption) mode, (b) 
regeneration (desorption) mode
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3. Development of an artificial neural network 

(ANN) model 

The removal rate of vapor content in the air and COP 

(coefficient of performance) are the two major indicators studied 

in this work to assess the performance of the DCHX-based 

dehumidifier. Fig. 2. shows the ANN model configuration 

developed in the present analysis, which comprises of input, 

hidden, and output layers. As shown, the input layer is made up 

of 5 input data, that is, dry-bulb temperature, specific humidity, 

air flow rate, water temperature, and water flow rate. The hidden 

layer is comprised of 10 neurons where the output layer gives the 

removal rate of vapor content in the air and COP. To predict the 

COP and removal rate of vapor content in the air separately, two 

ANN models have been developed namely the NARX network 

and the Levenberg-Marquardt algorithm.

The NARX(nonlinear autoregressive network with 

exogenous inputs) network was used for the prediction of future 

values, y(t),  of the time series from past values of that   time 

series. Unlike a standard auto-regressive model, which only uses 

past values of a time series to make predictions, the NARX 

network incorporates independent(exogenous) past values of 

another time series x(t). To train the NARX network, the 

levenberg-Marquardt algorithm was used in this work with 162 

experimental data items being extracted (regeneration 

temperature of 50oC). Of these, 70% were used for training the 

ANN and 15% being used to check its validity while the 

remaining 15 % was used toward its testing. The ANN model 

has developed in the Matlab platform, where ‘narxnet’ function 

was employed to create the network. In addition, ‘trainlm’ was 

employed to train the network. 

For the purpose of training, validation and testing of the ANN 

model, 162 experimental results were employed from a series of 

data gathering. During the experiment, the average temperatures 

of the inlet air for dehumidification and  regeneration processes 

were 30°C and 35°C, respectively. The average temperatures of 

hot water was set at 50°C and 80 °C respectively. During 

dehumidification process, the inlet humidity ratio was kept close 

to 20g/kg while it was kept to close to 12g/kg during 

regeneration process.  Cycle time was fixed at 300 seconds for all 

the cases. The moisture removal rate(dω) is the rate  at which the 

water vapor is removed by the desiccant coated heat exchanger 

and calculated by Eq. 1. COP is defined as the latent cooling 

capacity(Ql) divided by the total input thermal energy(Qreg) used 

for regeneration process(Eq.2). 

                                           (Eq. 1)

 

                                                             (Eq. 2)

In Figs. 3. and 4., the experimental output data are presented 

with a red circle for the removal rate of vapor content in the air 

and COP, respectively. The input data (dry-bulb temperature, 

Fig. 2. Configuration of the ANN model with three layers for the 
DCHX performance prediction

Fig. 4. Experimental output data for the coefficient of performance 
(COP): experimental inputs includes DBT(Dry bulb temperature) 
inlet, HR(Humidity ratio) inlet, water inlet temperature, water flow 
rate and air flow rate

Fig. 3. Experimental inputs and output data for the removal rate of 
vapor content in the air: experimental inputs includes DBT(Dry bulb 
temperature) inlet, HR(Humidity ratio) inlet, water inlet temperature, 
water flow rate and air flow rate
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specific humidity, water inlet temperature, water flow rate, air 

flow rate) are also shown in the figures. 

These input data are the crucial ones in exploring the operating 

characteristics as well as the performance of a thermal system as 

their variation along the system reflects the operational and 

functional characteristics. 

4. Results and discussion

The Levenberg-Marquardt back propagation algorithm was 

used to train the ANN model and evaluated its performace with 

the mean square error (MSE). There were five parameters 

considered for the input layer that deems to dictate the functional 

effectiveness of the DCHX in its operation where 

dehumidification and regeneration takes place repetitively. These 

are the dry-bulb temperature, specific humidity, water inlet 

temperature, water flow rate and air flow rate as aforementioned. 

When the dehumidification process takes place, the vapor 

content in air is adsorbed releasing the adsorption heat carried 

away by cooling water. An efficient temperature dependent 

dehumidification process is possible by controlling the 

temperature of the cooling water. This is followed by the 

regeneration process where the desiccant is regenerated via 

DCHX. That is, the desiccant recovers its adsorption potential by 

making contacts with the hot air channeling through the DCHX. 

For this process, different forms of heat sources can be applied 

including those from sustainable energy resources which makes 

the use of DCHX more appealing than compressor based 

dehumidification.

Besides the properties of a desiccant including its dimensions, 

the system configuration also plays a crucial role in the operation 

and performance of a DCHX. As one cyclic operation of the 

DCHX comprises in two processes (dehumidification and 

regeneration) involving the opposite heat demands, it is very 

important to furnish highly efficient means of heating and cooling 

alternatively. For the output layer, two parameters were taken 

into consideration, namely, the removal rate of water vapor 

content in the air and COP. Although the COP presented here 

merely reveals the effectiveness of hiring DCHX from the 

perspective of the 1st law of thermodynamics, similar analysis for 

the application of an artificial neural network (ANN) model 

could be considered in light of the 2nd law of thermodynamics 

[11]. This requires applying the concept and definition of 

“reversible process” with the operation of DCHX, which assures 

the minimum work required to bring about the same effect in air 

conditioning as expressed by the experimental data in actual 

operations. Of course, the algorithm and approach used to 

develop ANN models can be applied as appropriate.

To explore the reliability of the present analysis, a regression 

analysis has been carried out where the predicted output and the 

corresponding targets (measured values) were used. In the present 

analysis, linearity has been assumed in the correlation of data 

where training, validation and test were performed. By carrying 

out this statistical analysis, the robustness of the present ANN 

model could be verified without undue difficulties. 

Figs. 5. and 6. show the correlation that exists between the 

experimental and ANN-predicted values for the removal rate of 

vapor content in the air and COP, respectively. As shown in these 

figures, the values of the predicted output and corresponding 

(a)

(b)

Fig. 5. Regression plots for training, validation and testing for the 
removal rate of vapor content in the air: (a) regeneration 
temperature (50oC), (b) regeneration temperature (80oC)[12]
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targets show a linear pattern of correlation which validates the 

present analysis of liner regression irrespective of the regeneration 

temperature. That is, the ANN model delivers reliable results for 

different regeneration temperatures of 50oC and 80oC. The latter 

is well presented in our previous study[12].

As shown  there is a good agreement between both values (i.e. 

ANN prediction vs measured data) concerning the removal rate 

of vapor content in the air and the COP showing high values of 

R2. Fig. 7. shows the performance of the developed ANN model. 

As for the removal rate of vapor content in the air, the MSEs of 

7.59x10-4, 8.06x10-2, and 1.05x10-2 were observed for training, 

validation, and testing, respectively. On the other hand, as for the 

COP, the repective MSEs were 3.96x10-6, 1.24x10-2, and 

1.60x10-3. This indicates that the ANN model is capable of 

delivering reliable prediction in dealing with the complex and 

nonlinear characteristics of the DCHX performance.

Figs. 8. and 9. show the various outputs, responses (targets) 

and errors plotted against time for the removal rate of vapor 

content in the air and COP, respectively. In these figures, it can be 

Fig. 7. Mean Squared Error (MSE) for training, validation and 
testing: (a) removal rate of vapor content in the air (MRR) (b) 
COP

(a)

(b)

Fig. 6. Regression plots for training, validation and testing for COP:
(a) regeneration temperature (50oC), (b) regeneration temperature
(80oC)[12]

Fig. 8. Dynamic response output for ANN model for the removal 
rate of vapor content in the air
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readily seen how time points were selected for training, testing, 

and validation. It is worthwhile to note in Fig. 8. that the ANN 

model predicts the removal rate of vapor content in the air with a 

very low error. This is also observed in Fig. 9. for the case of the 

COP. 

5. Conclusions

This work deals with an artificial neural network (ANN) 

model in its performance prediction of a desiccant-coated heat 

exchanger (DCHX) used for dehumidification applications. 

Results are given in terms of  the removal rate of vapor content in 

the air and coefficient of performance (COP), which are major 

functional indicators representing the performance of a DCHX. 

The former measures the tangible information in actual room 

conditioning while the latter gives the energy-efficiency of the 

DCHX in its operation.

As for the input layer of ANN, different conditions were 

considered for the air and water streams channeling through the 

desiccant-coated heat exchanger(DCHX). The ANN model 

developed was trained by the 162 data samples from previous 

experimental studies (regeneration temperature of 50oC) . Of 

these, 70% were used for training the ANN and 15% being used 

to check its validity while the remaining 15 % was used toward its 

testing. MATLAB code was extensively used in the analysis to 

study feed forward and backward propagation. The following 

findings can be inferred from this study:

(1) The ANN model presented has shown good agreement 

with the experimental data showing high values of R2(~1), which 

indicates its reliability and high accuracy irrespective of different 

regeneration temperatures of 50oC and 80oC.

(2) For the removal rate of vapor content in the air, the MSE of 

1.05x10-2 was observed for testing. On the other hand, as for the 

COP, the repective MSE was 1.60x10-3.

(3) It can be concluded that the proposed ANN model could be 

applied to different operating conditions with reasonable accuracy. 

This study aims to develop an ANN model using DCHX's 

experimental data and verify its performance. Design variables 

for the optimization of DCHX include heat exchanger fin pitch, 

number of fins, and adsorbent coating thickness. Such design 

variables will be optimized using ANN and GA(Genetic 

Algorithm) in future research. Furthermore, The analysis could 

be further extended to study the DCHX performance from the 

perspective of the 2nd law of thermodynamics.
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