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1. Introduction

Thermal energy systems have developed the performance of the 

operation to effectively improve their energy efficiency and 

comfort levels. In order to find optimized performance, several 

mechanical and statistical methods have mainly examined using 

series of architectural and mechanical elements in buildings. 

Among them, controlling the Heating, Ventilation, and Air 

Conditioning (HVAC) system was gradually developed to define 

the optimized quantitative solutions by means of modifying 

parameters, functions, and operational coefficients of energy 

conservation measures. For improving internal control rules, the 

Proportional Integral Derivative (PID) rule has been commonly 

used at the phase of planning, manufacturing, and operating of 

thermal system[1-3]. With the PID algorithm, the control models 

combined advanced methods, such as the Fuzzy Inference System 

(FIS) and Artificial Neural Network (ANN), to increase their 

performances. The major purpose of using the FIS is that 

linguistic approaches can help to solve several ambiguous 

questions requiring not numerical and parametric values like 

traditional mechanical methods. By using the strategy of 

combining the FIS and thermal control models, many variations 

of control rules have been tested to maximize control efficiencies 

on how to supply appropriate amounts of fuel, air, water, and 

district heating in buildings and their networks[4-6]. In other 
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words, they have successfully improved control models in fields 

where elaborate controls demanded to determine various and 

unpredictable and subjective inputs from occupant. In the FIS 

model, its internal structure dealing with ambiguous outputs 

were able to examine a wide range of complex regression models. 

By using either of experimental or simulated data, its genetic 

algorithm adjusted model’s signals in the cases of radiation, 

convention, ventilation, and infiltration accordingly. It proposed 

adequately reliable signals to find possible correlations between 

subjective and objective variables[5, 6]. Similarly, the ANN 

algorithm have helped researchers to solve more complex systems 

dealing with boilers, exchangers, dampers, valves, and 

mechanical devices. The complexity of multivariate regression 

models requires enormous resources generated from both of the 

hardware and software in computing systems. Due to the 

complexity, it demands effective algorithms and advanced 

hardwares that enable to correspond to exponentially increasing 

numbers in calculations as variables and nodes are increased one 

by one. New approaches could be sought as the ANN structures 

are optimized, and computer technology advances to perform 

better on these calculations. Especially, the positive effects of the 

ANN is to define efficiency of comprehensive methods utilizing 

multiple distinct elements such as generator, exchanger, valve, 

damper, resistance coil, and fan motor speed. Through the 

data-driven regression analyses dealing with specific thermal 

demands linked to either lab-scaled or true-sized models, the 

performance efficiency of combining two different control 
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algorithms were investigated [5, 6].

The improvement of building’s thermal comfort has been 

investigated through the different types of survey-based 

researches for the qualitative and qualitative approaches. In order 

to increase objectivity in results, the Predicted Mean Vote (PMV) 

and the Predicted Percentage of Dissatisfied (PPD) indices were 

frequently used with experimental and simulated genetic 

algorithms for numerical controls. Many methods utilizing 

advantages of the FIS dealt with human factors and indoor 

thermal conditions derived from both architectural and occupant 

characteristics, and they were tested to confirm reliable tuning 

rules for better performance of the PMV models [7, 8]. There 

were several approaches reflecting the envelope conditions to 

calculate precise thermal loads to develop current methods, 

meanwhile, several traditional approaches were improved 

responding to modern standards and regulations in buildings [9]. 

On the other hand, advanced co-simulation applications were 

developed to effectively combine thermal calculation applications 

and programming languages. These methods were used to 

determine the real-time performance responding to the change of 

outdoor temperature, relative humidity, and precipitation. Also, 

many different types of energy conservation measures were 

selected and adopted to address the effect of architectural and 

mechanical factors. The data-driven approaches mainly dealt 

with some hidden interactions between the energy conservation 

measures by use of multi-layered matrixes [10-12]. 

Several types of studies have also conducted to improve the 

energy efficiency of the systems by means of modifying building 

geometries, occupant characteristics, and system operation. 

However, there have been some weaknesses to obtain optimized 

conditions of heating and cooling supply air for a space scale 

associated with a specific outdoor temperature condition. This 

research proposes an combined model for optimizing heating and 

cooling supply air conditions at a very hot area dealing with air 

mass and temperature. In results and discussion, the 

performances of the three different models are compared, and 

their control patterns are addressed to define their strengths or 

weaknesses in energy consumption and thermal comfort. In 

conclusion, the strength and the weakness of this simulation 

approach are described, and a follow-up study is addressed.

2. Methodology

2.1. Initial Configuration

For optimized control patterns in the season when the heating 

and cooling air supply is required in a day, this simulation model 

utilizes a weather condition of USA_FL_Orlando.Intl.AP. 

Parameter Unit Value

Building Type N/A Small Office

Floor Area m2 520.0

Building Height m 4.3

Area of Walls and 
Roof m2 915.5

Thermal Resistance 
of Walls hour∙℃/J 1.60×10-6

Area of 
Fenestrations m2 6.0

Thermal Resistance 
of Fenestrations hour∙℃/J 5.94×10-7

Table 1. Design Parameters

722050_TMY3. From the Commercial Building Energy 

Consumption Survey data, Orlando is located in the zone having 

more than 2,000 Cooling Degree Days and less than 4,000 

Cooling Degree Days. As indicated in Table 1., heating and 

cooling energy transfer is calculated based on given geometries 

and parameters, and, simultaneously, the model calculates the 

PMV levels. If the result is more than 0.5 or less than –0.5, the 

model changes the Tset  as a setting value. If the result is still over 

or under the setting values, the thermal model performs the 

process repeatedly. However, if the PMV value is within the 

setting value during the process, there is no any additional change 

of Tset.

This system utilizes a heater and a cooler in a single unit. A 

proposed ANN model is compared to a thermostat model and a 

fuzzy-based model to determine their performance of the energy 

use and the thermal comfort. In the ANN structure, one 

additional switch works to adjust indoor set-point temperature 

reflecting the PMV results.

2.2. Energy transfer model

A function of thermal energy transfer in a space is given by a 

reference[13]:

where, Qloss is the heat transfer from an indoor space to an 

outdoor space (J). Qgains is the heat transfer from a heater to a 

room (J). U is the internal energy (J). t is the time.

From the conduction through building envelopes, energy loss 

of a room, is given by:

   


(Eq. 1)

   








  (Eq. 2)



Jonghoon Ahn

ⓒ 2021. Korea Institute of Ecological Architecture and Environment all rights reserved. 9

where, hout and hin are the heat transfer coefficients (W/m·K), k 

is the transmission coefficient (W/m·K), A is the area (m2), D is 

the depth of envelope (m).

Assuming that there is no work in the system, energy 

gain of a room, and the rate of internal energy is given by:

Then, the time derivative of Troom is obtained:

2.3. Thermal comfort model

A thermal comfort model utilizes the PMV index which reflects 

on thermal loads and occupant metabolic rate [14, 15].

where, M is the metabolic rate (W/m2), L is the thermal 
load, Tcl is the average surface temperature of clothed body 
(°C), fcl is the ratio of clothed surface area to DuBois surface 
area (Acl/AD), Rcl is the effective thermal resistance of clothing 
(m·K/W), Ta is the air temperature (°C), hc is the convection 
heat transfer coefficient (W/m2·K), Tr is the mean radiant 
temperature (°C), hr is the radiative heat transfer coefficient 
(W/m2·K), Wa is the air humidity ratio, Wsk is the saturated 
humidity ratio at the skin temperature.

2.4. Control models

A thermostat model works within the dead-band, ±1°C. 

If the difference between Tset and Troom is greater than ±1°C, 

it sends an either on-signal or an off-signal to the heating and 

cooling supply model.

The FIS model uses two different input values for the 

optimized values of amounts of air supplied and its 

temperature. It reads the difference between Tset and Troom, 

wherein the temperature differences between the set-point and 

room temperature (E) are used for the calculation of a 

derivative of the temperature difference (ΔE) [16]:

       (Eq. 7)

 

    
 (Eq. 8)

if    and           (Eq. 9)

For the output, the FIS uses two membership functions for 

each input variables with universal of discourse 0 (0%) to 1 

(100%) for the amount of air and -10°C to 10°C for its 

temperature. The FIS, utilizes triangle membership functions as 

a maximum value is 1 and a minimum value is 0 [16].

 ∆  










 ≤ →

 ≤  ≤ → 
 

 ≤  ≤ →  
 

 ≤ →

  (Eq. 10)

The ANN algorithm includes a large class of several structures, 

and the appropriate selections of a nonlinear mapping function x 

with a network are required [17, 18]. The network algorithm 

consists of two input layers, ten hidden layers, and one output 

layer. The inputs x1,…xk to the neuron are multiplied by weights 

wk
i and summed up with the constant bias term θi., and the 

resulting ni is the input to the activation function g [17, 18]. The 

ANN model used in this study consists of the two inputs of E and 

ΔE from the thermostat and fuzzy-based controllers. It is trained 

to investigate control patterns which are able to maintain the 

range of the PMV setting value effectively. For the ANN training, 

a scale conjugate gradient algorithm, 1,000 times iterations, and 7 

epochs were utilized, and the results of the statistical validation, 

R2 values, were calculated as much as 0.99557 for air mass and 

0.99038 for air temperature.

Fig. 1. Simulation Model
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(Eq. 3)
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(Eq. 4)

    (Eq. 5)

    
  
 



(Eq. 6)
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Fig. 1. describes a simulation model, which consists of 

overall five different modules such as Control, Thermostat, 

Room, PMV, and Signal Generator. The thermal system 

produces exact amount of cooling or heating supply air. 

During this process, the PMV value is calculated at every one 

minute. At every phase, the adaptive model changes the 

amount of supply air to mitigate possible thermal 

dissatisfaction.

3. Results

3.1. Room temperature

Fig. 2. displays Tout at the City of Orlando on July 8th, 

which was extracted from the weather data of the US 

Department of Energy. Fig. 3., 4., and 5. describe the 

controlled patterns of Troom regulated by three different 

controllers. The change of Troom, for the thermostat performed 

regular patterns between 25°C and 27°C is derived from the 

dead-band setting of ±1°C. This result implies the fact that 

the control by the thermostat can be effective in reducing its 

energy consumption as it turns on and off as Troom reaches the 

preset value in overall performance, yet it may show a 

weakness to maintain the indoor thermal comfort within the 

comfort range.

Fig. 4. displays the improved performance of the FIS model 

which produces fair consistent Troom patterns. It effectively 

reduced the fluctuations of Troom except in time ranges of 

07:00 to 09:00 and 19:00 to 20:00. As Tout reaches to the Tset, 

the control errors was observed at the beginning and the end 

of the FIS algorithm working. Fig. 5. displays the advantages 

of the ANN algorithm which gently maintains Troom to target 

Tset near 26°C. The ANN’s network-based learned algorithm 

made the pattern of Troom steady and less fluctuated at the 

preset value. However, it is required to confirm whether an 

unexpected extra energy consumption happens and how much 

more energy consumption demands to keep the patterns 

improved.

Fig. 2. Outside Temperature of July 8th in Orlando, USA

3.2. Cooling energy

Fig. 6., 7., and 8. compares the cooling gain required to 

maintain Troom within Tset by the thermostat, FIS, and ANN 

models. The result of the thermostat shows that from 07:00 to 

23:00, Troom was properly controlled within Tset. However, 

even though it was repeatedly turned on and off, the 

maximum cooling gain reached near 50 MJ from 07:00 to 

23:00, which implies the fact that the capacity design for the 

thermal supply system needs to be reconsidered with its wide 

range of cooling gain from 0 to 50 MJ. 

Fig. 3. Room Temperature by the Thermostat

Fig. 4. Room Temperature by the FIS

Fig. 5. Room Temperature by the ANN

Fig. 6. Cooling Energy by the Thermostat



Jonghoon Ahn

ⓒ 2021. Korea Institute of Ecological Architecture and Environment all rights reserved. 11

Fig. 7. Cooling Energy by the FIS

Fig. 8. Cooling Energy by the ANN

The result of the FIS demonstrates fairly complex patterns 

at specific time ranges of 07:00 to 11:00 and 18:00 to 20:00. 

As previously described, if Tout met Tset, the control deviation 

was relatively large at the beginning and the end of the FIS 

algorithm working. This implies the fact that irregular 

inefficient performance can occur until the signals are 

stabilized to find optimized signals. As indicated in Fig 8., the 

ANN model shows a distinctly improved the pattern of Troom. 

The cooling gain was successfully managed to stay between 0 

to 25 MJ, and also the maximum requirement was properly 

mitigated under 30 MJ. In designing a thermal system, the 

result can be utilized to precisely predict daily energy 

consumption patterns and determine system’s maximum 

capacity to properly respond to unexpected circumstance that 

may arise depending on energy demand. 

4. Discussion

Table 2. displays the average values of the absolute numbers 

of the PMV results. As shown in the figures, the FIS model 

effectively controlled Troom as compared to the thermostat 

result, and it even performed slightly better than the result of 

the ANN. In fact, arguably all of three resulting values yielded 

a reasonable comfort level, for the recommended PMV values 

are typically positioned between -0.5 and 0.5. Thus, the 

results represented only relative advantages and disadvantages, 

yet in actual, all three models showed high performance in 

maintaining indoor thermal comfort in a hot climate 

condition.

Controller PMV (Avg. of Abs.) Efficiency (%)
Thermostat 0.27 -

FIS 0.18 -35.3

ANN 0.19 -29.3

Table 2. Comparison of the Thermal Comfort

Controller Daily Cooling Energy Transfer (MJ) Efficiency (%)

Thermostat 7.83 -

FIS 9.11 16.3

ANN 7.54 -3.9

Table 3. Comparison of the Cooling Energy Transfer

Table 3. confirms the advantage of the ANN algorithm. In the 

case of FIS, energy consumption has increased as the indoor 

thermal comfort improved, but the result of the ANN shows 

almost identical performance in the thermal comfort to the FIS, 

while it has shown significant improvement in energy 

consumption. Thus, despite the additional working of an 

adaptive process for adjusting Troom for thermal comfort is 

suggested, it can be confirmed that network-based learning 

algorithms respond the most effectively to mitigate the increase in 

energy consumption.

Regarding the result, the network-based learning model 

improves the thermal comfort by 29.3% than the conventional 

thermostat controller and increases the energy efficiency by 

17.2% than the fuzzy-based controller. It is confirmed that the 

network-based learning algorithm properly respond to various 

scenarios in thermal conditions to enrich spatial thermal quality 

effectively.

5. Conclusion

In this research, a network-based learning controller was 

proposed to determine the performance of controlling heating 

and cooling supply air. By comparison with the conventional 

thermostat and the fuzzy-based controller, the simulation result 

addressed each own efficiency of maintaining thermal comfort 

and mitigating escalation of the energy use. As indicated in the 

figures and tables, the proposed controller successfully improved 

the thermal comfort by 29.3% than the conventional thermostat 

controller, and increased the energy efficiency by 17.2% than the 

fuzzy-based controller, respectively.

As a result, it was confirmed that the proposed network-based 

learning controller properly responded to various changes in 

thermal conditions to improve spatial thermal quality. However, 

in the circumstance of controlling the amount of air and its 

temperature simultaneously, the analysis of which factor was 
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more effective when applied first, and how to apply the output of 

analysis to algorithms were neglected in the processing of internal 

algorithms. Thus, a follow-up study will be necessary to build an 

advanced framework which investigates its algorithmic 

interactions derived from the changes in variables of building 

geometries, mechanical calculations and human factors.
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