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1. Introduction

1.1. Research background

Building energy performance is typically affected by outdoor 

conditions, building characteristics, occupants, and operational 

specifics. Due to this complexity, predicting building energy 

consumption is a difficult task to deal with[1-3]. More than a 

decade ago, Perez-Lombard et al.(2008) argued that available 

building energy information was insufficient and not 

proportional to its importance[4]. 

Amasyali and El-Gohary(2018) attempted a building-energy 

studies review. It was found that 47%, 31%, 20% and 2% of the 

examined studies were related to total, cooling, heating, and 

lighting energy prediction, respectively. On the other hand, Do 

and Cetin(2018) suggested to work on the residential-building 

energy-consumption prediction since residential buildings have 

received less attention. Less attention happened because of the 

limited availability of residential building data sets[3]. 

Furthermore, identifying key variables to construct a 

prediction model also becomes an essential task. Choi et al. 
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(2017) performed a quantitative analysis based on energy 

consumption big data sets for residential buildings in Seoul, 

Korea[5]. Analysis performed with Pearson's correlation 

techniques showed that the correlation between electricity 

consumption and trading prices is higher than residential area 

and trading prices[5]. Kim et al.(2017) investigated the 

correlation between buildings and urban planning factors to 

identify significant variables on family-income groups[6].

In the meantime, the United States Energy Information 

Administration (EIA) has been administering the Commercial 

Building Energy Consumption Survey (CBECS) and the 

Residential Energy Consumption Survey (RECS) for nationally 

representative sample buildings. These surveys collect data sets 

related to building characteristics, energy sources, and energy 

usages[7][8]. 

1.2. Precedent studies

 Previous studies based on CBECS and RECS (references 

[9]-[15]) are summarized in Table 1. Robinson et al.(2015) 

presented a comparison between using the least variables or 

common variables (total area, number of floors, HDD, CDD, and 

principal building activity) and extended variables. Results show 
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A B S T R A C T K E Y W O R D

Purpose: Commercial and residential buildings are primary building types covering the majority of our built 
environment. Though, energy consumption pattern identification of those building types based on real-world data 
analysis has not been aggressively explored. Identification of primary factors influencing energy consumption 
patterns of commercial and residential buildings is the goal of this study. Method: CBECS and RECS data sets in the 
United States were used for commercial and residential building-energy-consumption pattern analysis. Multi-linear 
and seven machine learning algorithms are utilized to analyze building characteristics and end-use energy 
consumption patterns, e.g., cooling, heating, and water-heating. The SHAP value is utilized to describe influential 
factors in each energy consumption analysis model. Result: Ensemble algorithm yielded the lowest error rates 
compared with other algorithms. The calculated error rates also showed a lower level than the precedent studies 
performed on the CBECS and the RECS. Commercial building's cooling and heating energy consumption is more 
likely influenced by occupancy, while residential building's energy consumption is affected by equipment and 
climatic conditions. In the meantime, water-heating energy consumption shows noticeable dependency over the 
occupancy and climatic conditions for commercial and residential buildings. As a critical passive design element in 
the building, window has a more significant influence than overall insulation or roof finishing in identified 
residential buildings' energy consumption patterns.
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that the extended variables model's MAE is lower than common 

features model one[11]. Noh et al.(2017) proposed a data cube 

model combined with association rule mining for analyzing the 

CBECS 2012 data sets. They harnessed C5.0 decision tree 

algorithm as an effective and powerful classification method to 

represent overall building characteristics into ten variables 

representing the most influential factors for identifying building 

energy consumption patterns[17]. Different from other studies, 

Troup et al.(2019) and Kim et al.(2018) studied building energy 

consumption prediction concerning windows[14][15]. 

As for identifying influential variables contributing to a certain 

outcome, regression coefficient calculation used to be a 

commonly used method. The percentage of mean square error 

(MSE) has also been used to detect critical variables. But, both of 

these methods only show a single numerical value to represent the 

relation between input and the output variables[12][13]. In the 

meantime, the latest approach in the domain of interpretable 

machine learning is using SHAP value as a method to describe the 

accuracy of model prediction based on Shapley value and local 

surrogate model[18]. 

1.3. Research objectives

Few studies have addressed the prediction modeling for 

residential building energy consumption and yet identifying 

influential variables is crucial for better understanding what 

variables determine observable energy consumption profiles in 

residential and commercial buildings. In this perspective, we 

performed analysis on commercial and residential building 

energy consumption patterns to find influential factors embedded 

in the CBECS and the RECS data sets utilizing SHAP value 

calculation. Through analyzing multiple years of survey data sets, 

we also tried to track down the differences between the 1990s and 

the 2010s in influential factors affecting building energy 

consumption. This research evaluated commercial and residential 

building energy consumption data sets with the following 

objectives: 

a. How to predict energy consumption (cooling, heating, and 

water-heating) with higher accuracy based on selected features 

of different building types?

b. What variables could explain the differences between 

commercial and residential building energy consumption patterns 

based on each SHAP values? 

c. What are the influential building energy-consumption 

factors of the 1990s compared to those of the 2010s?

To the best of our knowledge, this research is the first attempt 

to analyze the RECS data sets for residential building energy 

consumption prediction; compared influential variables for 

energy consumption predictions that embedded in the CBECS 

and the RECS data sets based on SHAP value as the variable 

significance indicator in such predictions.

2. Materials and methods 

This research's overall framework is shown in Fig. 1. Each data 

set was classified into three different regression models based on 

the end-use energy consumption types (heating, cooling, and 

water-heating). Each model went through multi-linear 

regression to find significant variables/features based on each 

variable's p-value. Significant variables become candidate 

independent variables for the energy consumption prediction 

modeling based on selected machine learning algorithms. After 

this process, the variable importances were evaluated based on 

Table 1. Comparison among precedent studies carried out with CBECS and RECS datasets

Author Modeling technique Variable evaluation Target energy usage type

Yalcintas, et. al.(2007)
[9]

ㆍMulti-linear regression (MLR) and artificial neural 
network (ANN) MLR

ㆍEnergy use intensity (EUI) - 
Electricity 

Kaskhendikar, et. al(2010) 
[10]

ㆍLinear regression and random forest (RF) Regression trees ㆍTotal EUI

Robinson, et. al.(2015) 
[11]

ㆍXGBoost, linear regression, ridge regression, support 
vector regressor (SVR), bagging, RF, extra trees, 
linear SVR, AdaBoost, k-nearest neighbors (kNN) 
regression, multi-layer perceptron (MLP) regression, 
ElasticNet, lasso regression 

Reduction in Gini 
impurity

ㆍEUI Major fuel – 

Lokhandwala, et. al.(2018) 
[12]

ㆍMean, generalized linear model (GLAM), 
multivariate adaptive regression splines (MARS), 
SVR, RF, neural networks

% Increase in mean 
square error (MSE)

ㆍCooling EUI Electricity – 

Deng, et. al.(2018) 
[13]

ㆍLinear regression, lasso regression, SVR, ANN, 
gradient boosting, RF

% Increase in MSE
ㆍTotal EUI, HVAC EUI, Plug loads 

EUI

Troup, et. al.(2019) 
[14]

ㆍMulti-linear additive regression - ㆍTotal EUI, Heating EUI, Cooling 
EUI, Lighting EUI, Ventilation EUI

Kim, et. al.(2018) 
[15]

ㆍRegression Standard regression 
coefficient (SRCs)

ㆍTotal EUI
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the SHAP value calculation. Among those variables that were 

turned out to be important in each data set, the comparisons were 

performed over the 1990s and the 2010s to find temporal changes 

reflected in significant variable set differences. The differences 

between the significant variables for commercial and residential 

building energy consumption predictions were also traced.

2.1. Commercial Buildings Energy Consumption 
Survey (CBECS) microdata

CBECS were conducted in two phases: building survey and 

energy supplier survey that non-energy related data sets were 

collected. The first CBECS was conducted in 1979, and the most 

recent one was the CBECS 2012[7]. In this research, we used the 

CBECS 1992 and the CBECS 2012. The CBECS 1992 included 

6,734 buildings' data with 945 variables. Differently, 6,720 

buildings' data and 1,120 variables were listed in the CBECS 

2012. The detailed information for each variable are made 

available on the CBECS website[7].

2.2. Residential energy consumption survey (RECS) 

microdata

Like the CBECS, the RECS is also conducted through 

interviews to collect data on housing units' energy characteristics, 

energy usage patterns, and household demographics. With the 

latest RECS 2015, additional data from energy suppliers were 

added to estimate energy cost, usages for heating, cooling, 

appliances, and other end-users[8]. For this research, we used the 

RECS 1993 and the RECS 2015. The RECS 1993 includes 7,111 

buildings' data with 826 variables, while the RECS 2015 contains 

5,686 buildings' data with 760 variables. The detailed 

explanations for each variable are available on the RECS site[8].

2.3. Data processing 

We performed a series of multi-linear regressions to explore 

influential variables as the potential KPIs(Key performance 

indicators) to predict building energy consumption and to 

identify each variable's significance level in each end-use energy 

consumption model[13]. The statistical significance for each 

end-use energy consumption model was tested using a p-value 

with = 0.05; this test was done to all variables, including α 

categorical variables, since those variables were also converted 

into numerical values.

Further analysis of the variables was done by calculating the 

missing values in each variable across all data sets. In this work, 

we took average value (for numerical variables) and mode value 

(for categorical variables) to impute each variable's missing 

values. Afterward, output or target data normalization was 

completed for each model to obtain higher accuracy. Data 

normalization was done through logarithmic transformation and 

exponential function was deployed to the numerical results as an 

antilog from the precedent normalization. 

In this research, we tested seven different machine learning 

algorithms to predict building energy consumption profiles. 

Those algorithms were ridge regression, lasso regression, elastic 

net regression, support vector regressor (SVR), light gradient 

boosting machine (LightGBM), gradient boosting, and XGBoost 

[13][19]. Table 2. shows the hyperparameter value for those 

selected machine learning algorithms which include the constant 

( ), ElasticNet mixing parameter (L1_ratio), regularization α

parameter (C) and kernel coefficient ( ).γ

K-Fold cross-validation (kFold =10) were also performed for 

more accurate predictions. Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) were adopted as the error rate 

evaluation metrics. 

2.4. SHAP value

Shapley additive explanation (SHAP) value is an indicator to 

interpret the prediction acquired through complex model 

algorithms which could explain individual variable. SHAP value 

is a combination between the Shapley value (which computes 

Fig. 1. Overview of the adopted research procedure

Table 2. Hyperparameter values of the selected machine learning 
algorithms

Algorithm Hyperparameter

Ridge regression ㆍ = 15.5 19.8α – 

Lasso regression ㆍ = 5e-05 0.0008α – 

Elastic net regression
ㆍ = 0.0001 0.0007α – 
ㆍL1_ratio = 0.8 1 – 

Support vector regressor ㆍC = 1 70– 
ㆍ = 0.00001 0.001 γ – 
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based on the cooperative game theory model) and the Local 

interpretable model-agnostic explanation (LIME) model (which 

focuses on training local surrogates to explain individual 

predictions)[18][20]. SHAP value has been proved to be 

consistent in both global and local interpretations. 

We calculated the SHAP values by using the XGBoost 

algorithm to describe the influential factors. The twenty highest 

significant variables based on their SHAP value were plotted in 

the SHAP summary plot, which describes comparable 

importances of specific variables in each prediction instance.

3. Analytical results

3.1. Multi-linear regression analysis

CBECS and RECS data sets include a large number of 

variables. In order to reduce the number of variables, we 

performed a multi-linear regression analysis. Significant 

variables in the CBECS 1992, CBECS 2012, RECS 1993, and 

RECS 2015 were listed in Appendix A. Explanation of each 

variable is accessible on the EIA website[7][8].

3.2. Prediction metrics 

Prediction metrics are described in Table 3., Table 4., and 

Table 5. Each building energy model was evaluated by calculating 

the average and the standard deviation of the evaluative metrics 

(RMSE and MAE) drawn from each fold, since 10 K-fold 

cross-validations were performed. Bold numbers in the tables 

indicate the lowest RMSE in each model, whereas italic numbers 

represent the lowest MAE in each model. 

Table 3. shows the prediction results for the cooling model in 

both commercial and residential buildings. In commercial- 

building cooling-energy prediction (the CBECS 1992 and the 

CBECS 2012), the lowest RMSE and MAE are marked by either 

LightGBM, GradBoost, or XGBoost. Though, the lowest RMSE 

and MAE in residential cooling-energy prediction are made only 

by XGBoost.

Table 4. indicates prediction outcomes for the heating model. 

Similar to the cooling prediction case, the lowest RMSE and 

MAE for commercial heating-energy prediction were yielded by 

either LightGBM, GradBoost, or XGBoost. However, in the 

residential heating-energy prediction case, the lowest RMSE is 

marked by XGBoost, while GradBoost makes the lowest MAE.

Table 5. shows the prediction results for the water-heating 

model. The lowest RMSE and MAE for commercial 

water-heating-energy prediction were made by either 

LightGBM, GradBoost, or XGBoost. In this model, the lowest 

RMSE and MAE were generated by GradBoost. 

Furthermore, the consistency of each model is evaluated 

through its standard deviation. As represented by the italicized 

numbers in Table 3., Table 4. and Table 5., most of lowest 

standard deviations were ascribed to the ensemble algorithm, 

XGBoost, specifically. In contrast with other data sets, 

regularization- regression (Lasso and ElasticNet) shows reliable 

performance with the RECS 2015 data set. In the cooling, 

heating, and water-heating RECS 2015 models, the lowest 

RMSE and standard deviation were generated by either Lasso or 

ElasticNet. 

3.3. SHAP values in CBECS dataset

SHAP values are presented in summary plot graphs. In these 

plots, 20 variables that show the highest SHAP values are 

illustrated. For each variable, there are two outcomes for each 

evaluation point: SHAP value and variable value. SHAP value is 

defined by the positive or negative value on the x-axis, as shown 

in Fig. 2. and Fig. 3. Each dot's color defines the variable value, 

for instance pink color represents higher variable value whereas 

blue color indicates lower variable value. 

Fig. 2. shows the SHAP summary plot for each end-use energy 

Table 3. Prediction metrics for cooling energy analysis model (mean ± std. deviation calculated from each fold cross-validation) 

Algorithm
CBECS 1992 CBECS 2012 RECS 1993 RECS 2015

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Ridge 

regression
11.1522 
±1.7803

4.9442 
±0.3188

21.0493 
±2.8031

7.9548 
±0.7045

3.1318 
±0.3308

1.7958 
±0.0536

1.8824 
±0.0378

1.5993 
±0.0195

Lasso 
regression

11.1482 
±1.7905

4.8992 
±0.3124

21.0366 
±2.7421

7.9531 
±0.6986

3.1223 
±0.3186

1.7769 
±0.0515

1.8779 
±0.0377

1.5945 
±0.0190

Elastic Net 
regression

11.1468 
±1.7883

4.9009 
±0.3126

21.0392 
±2.7471

7.9530 
±0.6981

3.1225 
±0.3185

1.7773 
±0.0517

1.8779 
±0.0377

1.5945 
±0.0190

SVR 16.0414 
±3.7637

5.1243 
±0.5186

25.7204 
±4.8724

5.6634 
±0.6330

2.9614 
±0.3315

1.4937 
±0.0437

1.8114 
±0.0535

1.5280 
±0.0173

LightGBM 6.1448 
±1.4609

2.6555 
±0.1893

14.2661
±2.6137

4.9070 
±0.4691

1.7116 
±0.0723

1.4038 
±0.0219

1.7225 
±0.0594

1.4658 
±0.0184

GradBoost 6.2478 
±1.5644

2.4044
±0.1577

15.2933 
±3.6301

4.3966
±0.4541

1.5175 
±0.0601

1.2969 
±0.0159

1.7058 
±0.0639

1.4437 
±0.0212

XGBoost 5.8483
±1.3678

2.5014 
±0.1471

14.2851 
±2.5634

4.8830 
±0.4582

1.4688
±0.0499

1.2680
±0.0145

1.6905
±0.0589

1.4263
±0.0149
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consumption model built upon CBECS data sets. With CBECS 

1992 dataset, the cooling model illustrated in Fig. 2.(a) shows a 

set of influential variables including the highest five variables, 

namely, cooling percentage (COOLP), cooling percentage by 

district chilled water (CHWTP), number of computers 

(PCTRMC), total building area (SQFT), and number of workers 

category (NWKERC). CHWTP variable shows a negative 

correlation with cooling energy, which the higher value of 

CHWTP significantly reduces cooling energy consumption. 

PCTRMC, SQFT, and NWKERC variables show the same 

characteristics for commercial cooling energy consumption 

patterns; higher variable values induce higher positive SHAP 

value, impacting the corresponding model output. COOLP 

variable also shows a positive correlation, yet the lower value of 

COOLP would significantly generate a lower negative SHAP 

value than other CBECS 1992 variables. 

Conversely, in the cooling model CBECS 2012 model shown in 

Fig. 2.(d), COOLP variables do not show the importance level as 

the same variable in the CBECS 1992 model. Instead, NWKERC 

marks the most significant variable in cooling-energy 

consumption in the CBECS 2012. District chill water (CHWT) 

also becomes one of the influential variable factors, which the 

lower value of CHWT (indicates district chilled water piped in) 

generates a negative correlation to cooling energy consumption. 

This evidence also supports the ground basis on CHWTP in the 

CBECS 1992. 

The heating (Fig. 2.(b)) and water-heating (Fig. 2.(c)) model 

for CBECS 1992 data set share the same variables such as heating 

percentage (HEATP), total building area category (SQFTC), 

heating degree days (HDD65), number of workers category 

(NWKERC) and HVAC regular maintenance (MAINT). Other 

variables show a positive correlation to the heating and water 

heating model; while, the MAINT variable has the opposite 

tendency. A high variable value of MAINT (indicates no regular 

Table 4. Prediction metrics for heating energy analysis model (mean ± std. deviation calculated from each fold cross-validation) 

Algorithm
CBECS 1992 CBECS 2012 RECS 1993 RECS 2015

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Ridge 
regression

27.8235 
±4.7698

11.1148 
±1.2897

28.5069 
±4.7570

10.3066 
±0.9881

5.2683 
±0.8103

2.3010 
±0.1139

3.7425 
±0.3615

2.1969 
±0.0758

Lasso 
regression

27.8294 
±4.7702

11.1275 
±1.2914

28.5041 
±4.7572

10.3161 
±0.9898

5.2598 
±0.8086

2.2955 
±0.1122

3.7411 
±0.3615

2.1963 
±0.0758

Elastic Net 
regression

27.8289 
±4.7716

11.1268 
±1.2922

28.5054 
±4.7570

10.3160 
±0.9897

5.2596 
±0.8086

2.2953 
±0.1122

3.7412 
±0.3616

2.1964 
±0.0759

SVR 14.2928 
±2.7733

4.3194 
±0.4532

30.3556 
±6.6161

7.5224 
±0.9125

5.0027 
±0.8091

1.9283 
±0.1033

3.5214 
±0.4056

1.9159 
±0.0722

LightGBM 9.9605 
±1.3977

3.9490 
±0.2542

15.2504
±2.4363

5.7705 
±0.4834

3.6388 
±0.3816

1.8426 
±0.0508

2.9132 
±0.4618

1.8035 
±0.0654

GradBoost 10.2897 
±1.5870

3.4616
±0.2413

16.0412 
±2.9311

5.3306
±0.5266

3.7688 
±0.3999

1.7312
±0.0451

2.9947 
±0.3956

1.7530
±0.0589

XGBoost 9.8023
±1.2922

3.8190 
±0.2195

15.6038 
±2.4053

5.8237 
±0.4997

3.5310 
±0.3480

1.8006 
±0.0444

2.8980
±0.4090

1.8072 
±0.0601

Table 5. Prediction metrics for water heating energy analysis model (mean ± std. deviation calculated from each fold cross-validation) 

Algorithm
CBECS 1992 CBECS 2012 RECS 1993 RECS 2015

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Ridge 
regression

41.1601 
±7.1351

14.9803 
±1.6295

20.1728 
±2.4120

8.9688 
±0.6863

2.6986 
±0.2679

1.7570 
±0.0319

1.8705 
±0.1488

1.4506 
±0.0173

Lasso 
regression

41.1673 
±7.1336

14.9845 
±1.6280

20.1734 
±2.4119

8.9714 
±0.6866

2.6939 
±0.2670

1.7498 
±0.0318

1.8704 
±0.1491

1.4506 
±0.0171

Elastic Net 
regression

41.1656 
±7.1324

14.9841 
±1.6280

20.1740 
±2.4120

8.9713 
±0.6869

2.6939 
±0.2670

1.7498 
±0.0318

1.8704 
±0.1490

1.4506 
±0.0171

SVR 44.5340 
±10.9480

9.3098 
±1.4614

19.5053 
±2.8780

7.7244 
±0.7691

2.6552 
±0.2797

1.6761 
±0.0349

1.8571 
±0.1473

1.3999 
±0.0133

LightGBM 29.0626 
±4.7902

9.4846 
±0.8866

13.6551
±1.9819

5.8858 
±0.4841

2.5098 
±0.2603

1.6497 
±0.0307

1.8473 
±0.1481

1.4168 
±0.0178

GradBoost 29.5442 
±5.7027

8.2447
±0.8358

13.8251 
±2.1747

5.5691
±0.4925

2.5082
±0.2671

1.6089
±0.0330

1.8435
±0.1481

1.3897
±0.0136

XGBoost 28.0291
±4.6407

8.9564 
±0.7646

13.7955 
±2.0623

5.8718 
±0.5422

2.5118 
±0.2620

1.6525 
±0.0308

1.8652 
±0.1515

1.4196 
±0.0175



Identification of Primary Factors Influencing Energy Consumption Patterns of Commercial and Residential Buildings

26 KIEAE Journal, Vol. 20, No. 6, Dec. 2020

HVAC maintenance) would generate a lower negative SHAP 

value for heating and water-heating energy consumption. 

Surprisingly enough, in the water-heating model illustrated in 

Fig. 2.(c), computer usage (PCTERM) becomes one of the most 

significant variables. The high variable value of PCTERM 

(indicates computer usage in the building) also yields lower 

water-heating energy consumption. It is found that a higher 

PCTERM variable value indicated ‘No computer usage’ in the 

CBECS 1992 annotations. In fact, the absence of computer usage 

also indicated fewer workers (occupancy) in commercial 

buildings. This leads to lower water-heating energy 

consumption. 

In the heating (Fig. 2.(e)) and water-heating (Fig. 2.(f)) model 

of CBECS 2012, NWKER (or NWKERC), HDD6, and SQFT 

were marked as common influential variables. Also, for the 

CBECS 2012, building activity importance level is higher than the 

CBECS 1992 case. It is also found that HDD65 variable value in 

CBECS 2012 (Fig. 2.(e) and 2.(f)) yields higher SHAP values than 

in the CBECS 1992 case ( Fig. 2.(b) and 2.(c)). The low variable 

value of HDD65 in the CBECS 2012 yields a more significant low 

negative-SHAP value than HDD65 in CBECS 1992 case.

3.4. SHAP values in RECS dataset 

Fig. 3. shows the SHAP summary plot for each end-use energy 

consumption model built upon RECS data sets. In Fig. 3.(a), the 

cooling-energy influential factors in the RECS 1993 are the usage 

of air-conditioning (AIRCOND), air-conditioning usage 

behavior (USECENAC), number of individual air-conditioning 

(NUMBERAC), cooling degree days (CDD65), and age of 

air-conditioning (AGECENAC). AIRCOND and CDD65 show 

a positive correlation with cooling energy consumption. Though, 

a higher variable value of NUMBERAC would generate the lower 

negative SHAP value. This case happens because RECS 1993 

questionnaire put annotate '99' to indicate 'not applicable' choice 

for interviewees. The AGECENAC variable also has the same 

annotation as the NUMBERAC.

The bias annotation problem identified in RECS 1993 case is 

not repeated in RECS 2015 case; instead of annotating with the 

a. Cooling CBECS 1992 b. Heating CBECS 1992 c. Water Heating CBECS 1992

d. Cooling CBECS 2012 e. Heating CBECS 2012 f. Water Heating CBECS 2012
Fig. 2. SHAP values for CBECS datasets
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'99' for 'not applicable' choice, RECS 2015 annotates it with the 

'-2' value. Fig. 3.(d) shows SHAP values for RECS 2015 with the 

AIRCOND, AGECENAC, CDD65, and NUMBERAC are 

turned to be significantly influential variables. 

Unlike heating and water-heating models built upon the 

CBECS dataset, heating and water-heating in RECS dataset do 

not share the same influential factors. The main space heating 

equipment type (EQUIPM) variable becomes the only common 

influential factor for heating and water-heating energy 

consumption in the RECS 1993 and RECS 2015. 

In the heating model of RECS 1993 (Fig. 3.(b)), influential 

factors are EQUIPM, HDD65, type of housing unit (TYPEHUQ), 

number of windows (WINDOWS), secondary space heating 

(EQUIPAUX), and age of main space equipment (EQUIPAGE). 

HDD65, WINDOWS, and EQUIPAUX are positively correlated 

with heating energy consumption. In this model, bias annotations 

are also found in EQUIPAGE that yields pink dots in the lower 

negative SHAP values (Fig. 3.(b)). 

In the heating model of RECS 2015, the EQUIPM, HDD65, 

and WINDOWS variables turn out to be influential factors (Fig.  

3.(e)). Other than that, indoor-temperature related variables 

become influential factors such as daytime indoor home 

temperature during winter (TEMPHOME) and night time indoor 

home temperature during winter (TEMPNIGHT). Also, 

swimming pool ownership influences the heating energy 

consumption where a lower variable value (indicates not having a 

swimming pool) would generate a lower negative SHAP value. 

Housing unit variables also influence the heating energy 

consumption, such as total square footage (TOTSQFT_EN) that 

is positively related. 

In the water-heating model of RECS 1993 (Fig. 3.(c)) and 

RECS 2015 (Fig. 3.(f)), there are some common influential 

variables in both years. The number of household members 

(NHSLDMEM), location (census region (REGIONC) and 

census division (DIVISION)), EQUIPM, CDD65, and HDD65 

are those common influential factors in both years. Interestingly, 

this is the only model that yields both CDD65 and HDD65 as 

influential factors. CDD65 is the factor that negatively correlated 

with water-heating energy consumption. On the other hand, 

HDD65 is positively correlated with water-heating energy 

a. Cooling RECS 1993 b. Heating RECS 1993 c. Water Heating RECS 1993

d. Cooling RECS 2015 e. Heating RECS 2015 f. Water Heating RECS 2015
Fig. 3. SHAP values for RECS datasets
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consumption. 

In addition to the water-heating model of RECS 2015 (shown 

in Fig. 3.(f)), TEMPHOME variable is an influential one even 

though it is not so significant. The total building area 

(TOTSQFT_EN) variable in the water-heating model also 

significantly impacts water-heating energy consumption. A high 

variable value of TOTSQFT_EN would significantly lower 

water-heating energy consumption (Fig. 3.(f)). In contrast, the 

low variable value of TOTSQFT_EN in the RECS 1993 scatters 

along with the SHAP value without any trends detected (shown 

in Fig. 3.(c)).

4. Discussion

Machine-learning-based building-energy consumption 

predictions with SHAP value calculation were performed to 

identify the most influential factors impacting energy 

consumption and the differences reflected by survey years and 

building types. Results show that the ensemble algorithms possess 

advantages in lowering both RMSE and MAE. These results also 

confirm the outcome of a previous study by Robinson et al. 

(2015)[11]. We also found that RMSE and MAE that are marked 

in this study show the lowest error rate than other precedent 

studies.

Regarding its consistency, we also identified that the ensemble 

algorithm has better consistency than other algorithms. 

Meanwhile, in the RECS dataset, the regularization-regression 

algorithm (Lasso and ElasticNet) shows fairly reliable 

performance in error rate and standard deviation. We could infer 

that the regularization-regression algorithm could work well on 

a complete dataset since there is no missing data on the RECS 

1993 and RECS 2015. 

As being reflected on SHAP values, influential factors on 

energy consumption are also revealed. Table 6. shows the 

findings on the variables’ trend differences in each energy model. 

Lokhandwala et al.(2018) found that the CBECS 2012 

cooling-energy consumption increases as a function of 

non-climatic conditions relative to the CBECS 2003[12]. In 

reference to that statement, our study revealed that neither 

CDD65 nor HDD65 is marked as the source for the highest 

cooling-energy SHAP value. Fig. 2.(d) shows that the lower value 

of CDD65 in the CBECS 2012 significantly decreases cooling- 

energy consumption compared to CDD65 in CBECS 1992, which 

only slightly impacts the output. 

The comparisons of SHAP values between the 1990s data set 

and the 2010s data set give some fascinating insight. Based on the 

heating energy model of RECS 2015, a higher number of 

household members (NHSLDMEM) would decrease heating 

energy consumption, which did not happen in the RECS 1993. 

Also, in the RECS 1993, square footage (TOTSQFT_EN) was 

positively related to water-heating energy consumption, which 

means a more extensive building area would consume more. 

Reversely, TOTSQFT_EN was negatively related to water- 

heating energy consumption in the RECS 2015. In addition, Fig. 

2. shows that the number of worker factors in the CBECS 2012 

becomes more influential than its SHAP values in the CBECS 

1992. 

In commercial buildings, common variables that influence 

cooling and heating energy consumption are the number of 

workers and the occupancy variables. On the other hand, 

residential energy consumption is more influenced by its HVAC 

appliances and climatic conditions. Only residential water- 

heating energy consumption is significantly influenced by 

NHSLDMEM. Furthermore, we also identified that residential 

buildings' windows are more influential than other passive design 

factors (i.e., insulation and roof).

5. Conclusion 

This study investigated commercial and residential 

building-energy consumption prediction models based on the 

CBECS and the RECS data sets collected in the United States. 

Several selected machine learning algorithms were tested and 

acquired outstanding error rate reduction compared with 

precedent studies. SHAP value was also utilized to illustrate 

influential factors for building energy consumption. Influential 

factors such as climatic condition and occupancy show 

differences in commercial and residential buildings between the 

Table 6. Findings on the variables’ trend differences for each energy model

Model Variable 1992 2012 Model Variable 1993 2015

C
B
E
C
S
 

Cooling COOLP (+)
NWKERC (+)

COOLP (×)
NWKERC ( )↑

R
E
C
S
 

Cooling - -

Heating and 
Water-heating

PBA (+)
HDD65 (+)

PBA ( )↑
HDD65 ( )↑

Heating

TEMPHOME (×)
TEMPNITE (×)
SWIMPOOL (×)
NHSLDMEM (×)

TEMPHOME (+)
TEMPNITE (+)
SWIMPOOL (+)
NHSLDMEM (-)

Water-heating  PCTERM (-) PCTERM (×) Water-heating TOTSQFT_EN (?) TOTSQFT_EN (-)

(+) : Positively related, (-) : Negatively related, ( )↑ : Higher influence than precedent year, (×) : Unavailable factor, (?) : Scattered values  



ㆍGigih Rahmandhani Setyantho Seongju Chang

2020. Korea Institute of Ecological Architecture and Environment all rights reserved.ⓒ 29

1990s and the 2010s. 

A more significant influence of climatic conditions is expected 

in future years. The number of workers in the 2010s also 

increasingly influence energy consumption in commercial 

buildings compared with the 1990s. Commercial buildings' 

cooling and heating energy are highly influenced by occupancy 

patterns based on our study, while residential buildings' cooling 

and heating energy are highly affected by equipment and climatic 

conditions. In the meantime, water-heating energy consumption 

is influenced by occupancy and climatic condition in both 

commercial and residential buildings. 

In this research, we limited our study to CBECS and RECS data 

sets considering the data sets' data availability and size. Further 

study might need to relate the results inferred from the calculated 

SHAP values with various social and economic conditions. This 

process would strengthen the merit for machine-learning-based 

building-energy consumption prediction and stimulate potential 

beneficiaries to guarantee more informed and controlled energy 

consumption behaviors in the future based on climatic, social, 

and economic dimensions.
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CBECS 1992 CBECS 2012 RECS 1993 RECS 2015

Cooling Heating
Water 

Heating
Cooling Heating

Water 
Heating

Cooling Heating
Water 

Heating
Cooling Heating

Water 
Heating 

ACWNWP BLDSHP BOILP BOILER ACWNWL ACWNWL AGECENAC ADQINSUL ADQINSUL ADQINSUL ADQINSUL ADQINSUL

AWN  BULB CHWTP  CDD65  BOILER  BLDSHP AGERFRI1 AGERFRI2 AGERFRI2 AGECENAC AIRCOND AIRCOND

BULBP BULBP FACIL CENDIV BULB  BOILER AIRCOND AIRCOND AIRCOND AIRCOND BEDROOMS ATHOME

 CDD65 CDD65 FDSEAT CHWT  CDD65 BULB BEDROOMS AMTMICRO BEDROOMS AMTMICRO CENACHP BEDROOMS

 CENDIV CENDIV FLUORP COOLP CENDIV  CENDIV CDD65 ATHOME CDD65 BEDROOMS DIVISION CDD65

 CFLRP CFLR FURNP EMCS CHILLR CFLR DRYER BEDROOMS CENACHP CDD65 DOOR1SUM CENACHP

CHILLR CHILLR HCBED EVAPCL CHWT CHWT EMPLOYHH CDD65 CWASHER CENACHP EQUIPM EQUIPAUX

 CHWTP  CHWTP  HDD65 FACIL COOLP COOLP EQUIPAGE CENACHP DISHWASH DIVISION HDD65 EQUIPM

COOLP  FACIL  HEATP  GLSSPC ECN FACIL HDD65 CWASHER DIVISION DOOR1SUM HHSEX HDD65

ECN FLUORP LTNHRP HDD65 FACIL FLUOR NCOMBATH DISHWASH DWASHUSE EQUIPM NHSLDMEM HHSEX

EMCS FURNP LTOHRP HID GLSSPC FLUORP NHAFBATH DIVISION EMPLOYHH HDD65 NUMMEAL ICE

EVAPP GLSSPC MAINT MONUSE HDD65 HDD65 NHSLDMEM DOOR1SUM EQUIPM NUMBERAC POOL KOWNRENT

FACIL  HDD65 MONCON NOCCAT HEATP HEATP NUMBERAC DRYER HDD65 SIZRFRI1 SIZRFRI1 MICRO

 FDSEAT HEATP MONUSE NWKERC HID LTOHRP OTHROOMS DWASHUSE KOWNRENT STORIES SWIMPOOL MONEYPY

FLUORP HID NFLOOR OTCLEQ HTPMPH MONUSE SDESCENT EQUIPAGE MONEYPY TOTSQFT_EN TEMPHOME NHSLDMEM

FURNP HTPHP NWKERC OTLT MAINT NOCCAT STORIES EQUIPAUX NHAFBATH TYPEHUQ TEMPNITE NUMBERAC

GLSSPC HTPMPC OTLT PBA MONUSE NWKERC TYPEHUQ EQUIPM NHSLDMEM USEWWAC THERMAIN NUMFREEZ

HEATP HTPMPH PBA PCTRMC NFLOOR OTCLEQ USECENAC HDD65 NUMFRIG WINDOWS TOTSQFT_EN NUMFRIG

HIDP LODGRM PCTERM RCAC NOCCAT OTLT USEWWAC NHAFBATH POOL DISHWASH WINDOWS NUMMEAL

 HTPCP MAINT PKGHP RDCLNF NWKER PBA WINDOWS NHSLDMEM RECBATH THERMAIN ICE POOL

HTPHP MONCON RDHTNF RDLTNF NWKERC PCTERM DWASHUSE NUMFRIG REGIONC OVEN NUMCFAN REGIONC

LODGRM NRSBED RDLTNF RFGWI  OTCLEQ PCTRMC MONEYPY OTHROOMS SDESCENT NUMCFAN USEWWAC SIZRFRI1

 LTNHRP NWKERC RFCNS SLFCON  OTLT PKGCL WASHLOAD POOL SIZRFRI1 NCOMBATH SIZRFRI2 SIZRFRI2

LTOHRP OTCLEQ RFGEQP SQFT PBA  PKGHT DISHWASH RECBATH STORIES TEMPNITE AGECENAC STORIES

MAINT OTCLP RFGWIN SQFTC PKGCL  RCAC WHEATSIZ REGIONC SWIMPOOL HHSEX ATHOME SWIMPOOL

MONUSE PBA RWSEAT WKHRS PKGHT  RFCNS THERMAIN SIZRFRI1 THERMAIN WHEATSIZ OTHROOMS TEMPHOME

 NFLOOR PKGCL SLFCNP WKHRSC RDHTNF RFGCL WHEATAGE STORIES TVCOLOR OTHROOMS TYPERFR2 THERMAIN

NWKERC PKGHP SQFTC YRCON RDLTNF RFGEQP NUMMEAL SWIMPOOL TYPERFR2 TVCOLOR CDD65 TVCOLOR

PBA REGION WKHRS REGION RFGOP EQUIPAUX TVCOLOR USECENAC TYPERFR2 TEMPGONE TYPEHUQ

PCTRMC RFGEQP WKHRSC RFCNS RFGWI TOTSQFT_EN TYPEHUQ WASHLOAD STOVE NHAFBATH TYPERFR1

PKGCP SLFCNP  YRCON RFGCL SLFCON TVCOLOR TYPERFR2 WHEATSIZ USECENAC TYPERFR2

PKGHP SQFTC YRCONC  RFGEQP  SQFT DOOR1SUM USECENAC OTHROOMS REGIONC WINDOWS

RCACP YRCON RFGOP  SQFTC USEWWAC USEWWAC TYPERFR1 CWASHER

RDHTNF YRCONC SQFT WKHRS WINDOWS AMTMICRO KOWNRENT UPRTFRZR

RDLTNF  SQFTC WKHRSC THERMAIN TEMPHOME NUMFRIG NCOMBATH

RFGEQP  YRCON  YRCON WASHLOAD ATHOME OVEN SDESCENT

RWSEAT  YRCONC YRCONC NUMBERAC EQUIPAUX EMPLOYHH

SLFCNP      TYPERFR1 TYPERFR1 AGERFRI2

 SQFT     MICRO WINDOWS USEWWAC

 SQFTC   SIZFREEZ TEMPGONE TEMPNITE

 WKHRS  TEMPHOME DOOR1SUM AGEFRZR

WKHRSC  EMPLOYHH TOTSQFT_EN RECBATH

YRCON     DRYER TOTSQFT_EN

Appendix A. Energy consumption modeling input variables selected from CBECS and RECS data 

sets
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