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1. Introduction1)

Most of glazing systems in a building are made of highly conductive 
materials, so they are particularly prone to large heat gains and losses in 
buildings because of direct heat gain from solar radiation and heat 
transfer between outside and inside. It indicates that properly designed 
window is one of the important factors for an energy efficient building 
[1]. 

The International Energy Conservation Code (IECC) was created by 
the International Code Council in 2000. This code has been adopted by 
many US state and local governments to establish minimum design and 
construction requirements for energy efficiency.

In addition, IECC and ASHRAE (United States Heating, 
Refrigeration, Air Conditioning Engineers Association) define climate 
regions based on heating degree days, average temperature, 
precipitation to help builders to identify appropriate climate regions 
they build. So builders can decide the climate-specific construction 
guidelines from the IECC they should use.
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The primary goal of this research is to investigate the effects of 
window design variables on annual cooling and heating energy in a 
single residence based on IECC requirements and different climate 
regions in the United States using the statistical analysis, which can 
provide references for window design.

2. Literature Review

According to Moorjani and Asadi [2], one of the most effective ways 
to reduce energy loss through the building envelope is to optimize  
thermal performance, area, and placement of the transparent parts of 
the building. Therefore, architects and general contractors should 
consider effective way of selecting and placing windows to control 
solar gains to reduce cooling energy use during the summer season, 
while reducing thermal losses during the winter season [3].

Although energy simulation can be useful in investigating heat gain 
or loss through windows, it requires significant time, resources, and 
technical expertise. In addition, building energy performance 
evaluation using the simulation tools is usually limited to complex 
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A B S T R A C T K E Y W O R D

Purpose : Window area, location, and selection of glazing are a very important factor in reducing cooling and 
heating energy use of a building. The primary goal of this research is to investigate the effects of window design 
variables on annual cooling and heating energy use in a single residence based on climate regions in the United 
States using statistical analysis. Method : The methodologies used in this paper are building energy simulations, 
descriptive statistics, t-test, Latin Hypercube Sampling, and sensitivity analysis. Two groups of window 
variables are defined and simulated to explore the difference of the simulation results using Latin Hypercube 
Sampling and t-test. Then, the enter method as a regression model is used to investigate which group of data 
better predicted annual cooling and heating energy use. Lastly, Standard Regression Coefficients (SRCs) 
sensitivity indicator is used to determine if the influence of window parameters on cooling and heating energy 
use varies by different climate zone. Results : T-test results show that the differences in simulation results 
between the two groups are not statistically significant. That means that simulations using less number of 
variables (Group B) can have similar accuracy than simulation with higher number of window variables (Group 
A). As a result of the regression models, average adjusted R2 is 0.886 for Group A and 0.933 for Group B. 
Therefore, the regression model using Group B is selected to determine the effect of each variable on energy use. 
According to SRCs from regression, the most sensitive design parameters for cooling energy use are SHGC, 
west and south facing windows, while U-value, north and west facing windows are the most sensitive window 
parameters for heating energy use.
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buildings and applied in the later stages of design. For small building 
such as residences and low-rise apartment buildings, general 
contractors tend to use personal experience to make design decisions 
using the minimum requirements specified in the building code [4].

Janelle et al. [5] studied a new modeling approach to quantify 
building energy performance in the early design stage using 
multivariate linear regression model based on 27 building parameters 
for office buildings. This study suggested that the linear regression 
model can be the basis for effective decision support tools instead of 
energy simulation at the initial design stage. 

One study also proposed to provide architects or general contractors 
with useful guidelines of the building design parameters to help them 
select building materials to construct an energy-efficient house [6].

3. Methods

The methodologies used in this research are building energy 
simulations, descriptive statistics, t-test, Latin Hypercube Sampling 
(LHS), and sensitivity analysis including multivariate linear regression 
which determines the impacts of window design variables to building 
energy use. Fig. 1. shows the flowchart of the overall research 
methodology.

Fig. 1. Research Methodology

Two specific questions to be answered through this study are as 
follows. 

1) Is it possible to maintain or improve the predicted simulation 
results while minimizing the number of design variables?

The number of design variables for considerations should be 
minimized to provide simple and practical guideline for architects and 
general contractors. In order to select the efficient window design 
variables, two groups of window variables are defined in Table 1. 

As seen in Table 1., twelve parameters are considered as window 
variables for Group A that were used in the previous research [6], and 
six parameters are used for Group B as an alternative. Since simulations 
of each group require extensive input for sensitivity analysis, Latin 

Hypercube Sampling (LHS) is used to develop the combinations of the 
window variables within the specified ranges for comprehensive 
simulation input files for sensitivity analysis. According to 
Dominguez-Munoz [7] et al., Latin Hypercube Sampling (LHS) is a 
common sampling technique for building energy simulations for a 
minimum number of simulations because each parameter has uniform 
distributions since all values within the specified range are considered 
equally probable design variables.

After performing simulations using a input variable from LHS, t-test 
was performed to investigate the difference between the results of two 
simulation groups. If the difference of simulation results between the 
two groups is not statistically significant (at 95% confidence level), it 
means that even with a small number of variables, it is possible to 
achieve the similar results with many variables. In addition, the 
comparison of regression results from two groups has been conducted 
to identify which group of regression model explains the simulation 
results better.

Group Window Variables Unit Min. Max.

A

WWR1): South % 5 90
WWR: North % 5 90
WWR: West % 5 90
WWR: East % 5 90

U-value of window: South
W/°C·m2

(Btu/hr·ft2·°F)2)
0.84

(0.15)
4.50

(0.80)

U-value of window: North
W/°C·m2

(Btu/hr·ft2·°F)
0.84

(0.15)
4.50

(0.80)

U-value of window: West
W/°C·m2

(Btu/hr·ft2·°F)
0.84

(0.15)
4.50

(0.80)

U-value of window: East
W/°C·m2

(Btu/hr·ft2·°F)
0.84

(0.15)
4.50

(0.80)
SHGC of window: South N/A 0.25 0.75
SHGC of window: North N/A 0.25 0.75
SHGC of window: West N/A 0.25 0.75
SHGC of window: East N/A 0.25 0.75

B

WWR: South % 5 90
WWR: North % 5 90
WWR: West % 5 90
WWR: East % 5 90
U-value of window: 
All orientations

W/°C·m2

(Btu/hr·ft2·°F)
0.84

(0.15)
4.50

(0.80)
SHGC of window: 
All orientations

N/A 0.25 0.75

Table 1. Window variables and associated sampling ranges used in 
the simulation

2) Does the window design variables have different effects on 
energy usage depending on climate conditions (climate regions)? 

Because the cooling and heating energy demand is sensitive to 
different climate zones, simulations are conducted in six climate zones 
defined by ASHRAE [8]. Six climates are selected to explore the 

1) WWR: Window to Wall Ratio (window area has been equally distributed on each facade.)
2) Number in the parenthesis indicate the value in IP unit.
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impact of local weather conditions, and they represent the average 
weather conditions of very-cold (Minneapolis, MN); cold (Chicago, 
IL); mixed-humid (Atlanta, GA); hot-humid (Houston, TX); hot-dry 
(Phoenix, AZ); and marine (Los Angeles, CA) climates [9]. TMY3 
weather data for each selected location were used for the simulations. 
The summary of the climate characteristics is shown in Table 2.

Location Climate Region HDD653) CDD654)

Minneapolis, MN Very Cold 7882 699

Chicago, IL Cold 6493 835

Atlanta, GA Mixed-Hunid 2827 1810

Houston, TX Hot-Humid 1525 2893

Phoenix, AZ Hot-Dry 1040 4355

Los Angeles, CA Marine 1286 682

Table 2. Climate Characteristics of the Six Selected Locations

3.1. Statistical Analysis

Sensitivity analysis is a study of the influence of independent 
variables on dependent variable in certain condition [10]. Therefore, 
sensitivity analysis has been used to study the effects of window design 
variables such as WWR, orientation and thermal properties of glazing 
on energy usage. There are two main approaches of sensitivity analysis: 
local sensitivity analysis and global sensitivity analysis. Local 
sensitivity analysis investigates the impact of one variable as keeping 
others fixed, while global sensitivity analysis uses all variables to 
investigate the relative impacts [6,11,12]. For this research, global 
sensitivity analysis has been used to study the impacts of all design 
parameters simultaneously on energy consumption. 

In sensitivity analysis, regression is the most widely used method of 
building energy analysis because it is fast to compute and the results are 
easy to understand. From the regression model, many indicators can be 
used for the sensitivity indices such as SRC (Standard Regression 
Coefficients), PCC (Partial Correlation Coefficients), and their rank 
transformation (SRRC standardized rank regression coefficient), and 
partial rank correlation coefficient (PRCC) [13]. One study has applied 
SRC indicator to determine the main variables affecting the maximum 
cooling load of a perimeter zone in a three-story office in southern 
Spain [14].

For this research, SRC sensitivity indicator is also used to study the 
influence of window parameters on cooling and heating energy use in 
different climate zones. 

3.2. Base-case Simulation Model

Base-case simulation model is a single-family residence based on 

3) Heating Degree Days at 65°F (18.3°C) base temperature
4) Cooling Degree Days at 65°F (18.3°C) base temperature

U.S. Census Beaureu and IECC requirements of wall, floor, and roof 
assembly, and HVAC system efficiency specifically for single-family 
residence.

A 232 m2 (2,500 ft2) single-family residence is considered as the 
basis for this study based on U.S. Census Beaureu [15]. The base-case 
house is assumed to have light-weight wood-frame construction with 5 
cm x 10 cm (2 inches x 4 inches) wall studs spaced at 40.6 cm (16 
inches) on-center and 5 cm x 15 cm (2 inches x 6 inches) ceiling 
joists/roof rafters spaced at 61 cm (24 inches) on-center, a 10 cm 
(4-inch) slab-on-grade floor, and an unconditioned-vented attic space. 
The base-case house has the 2015 IECC5) specified climate-specific 
exterior wall assembly (3.52 m2·°C/w (R-20)) and ceiling assembly 
(8.63 m2·°C/w (R-49)), slab perimeter insulation (0.61 m (2 ft) 1.76 
m2·°C/w (R-10) perimeter with 0.88 m2·°C/w (R-5) gap). The 
base-case HVAC system includes a SEER6) 13 central air-conditioner 
with a 78% AFUE7) furnace conforming to the 2015 IECC. The heating 
and cooling set-points are 21.7°C (71 ºF) for the winter and  24.4°C (76 
ºF) for the summer without setback temperature.

For the simulation, BEopt simulation program ver. 2.7 was used.  
BEopt stands for Building Energy Optimization, and has been 
developed by the National Renewable Energy Laboratory (NREL) in 
support of the U. S. Department of Energy (DOE). BEopt software is 
specially developed for building energy simulation of residence to 
utilize EnergyPlus simulation engine, and provides detailed simulation 
analysis to evaluate residential building energy consumptions [16]. 

4. Findings

The results of this study include the follows: 1) simulation results of 
base case house in six selected locations, 2) t-test results between 
Group A and Group B as explained in Table 1., 3) comparison of 
regression models between Group A and Group B, and 4) SRC 
(Standard Regression Coefficients) results of a selected regression 
model.

4.1. Base-case Energy Use

From the BEopt output, the thermal energy use and electricity use 
are investigated on an annual basis. Fig. 2. to Fig. 6. show the annual 
total energy use, electricity use and thermal energy use for the six 
selected locations including: 1) Minneapolis, MN, 2) Chicago, IL, 3) 
Atlanta, GA, 4) Houston, TX, 5) Phoenix, AZ, and 6) Los Angeles, CA. 
Table 3. indicates the case number in X axis in Figures from 2. to 6.

Fig. 2. shows total energy use for a year (kWh/year) including 
cooling and heating, fan, lighting, and other appliances. Fig. 3. 
excludes the energy use of lighting and other appliances from Fig. 2. 

5) International Energy Conservation Code is the building code in the U.S. 
6) Seasonal Energy Efficiency Ratio
7) Annual fuel utilization efficiency
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and shows only cooling and heating energy use since energy uses of 
lighting and other appliances show the same in each region.

Case Number City Name
1 Minneapolis, MN
2 Chicago, IL
3 Atlanta, GA
4 Huston, TX
5 Pheonix, AZ
6 Los Angeles, CA

Table 3. Name of City in Figures from 2. to 6.

Fig. 4. shows electrical energy use including cooling, fan, lighting, 
and other appliances, and Fig. 5. shows only cooling and fan energy for 
heating and cooling from electrical energy use.

Lastly, Fig. 6. shows thermal energy use including heating and 
domestic hot water energy use.

More energy use for heating was observed specially in Minnesota 
and Illinois, and more energy usage for cooling was observed specially 
in Arizona and Texas, which conform to the heating degree days and 
cooling degree days (Table 2.). These variations in cooling and heating 
energy are a direct indication of the local climate features such as long 
winter period of Minnesota and Illinois and long summer period of 
Arizona and Texas. The relatively mild climate condition in California 
and Georgia shows that cooling and heating energy use has been used 
relatively less than other regions. In addition, lighting and other 
appliances show a large share of electrical energy use.

* Number in the parenthesis indicates kWh/year50909
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Fig. 2. Total energy use for six selected locations
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Fig. 3. Cooling and heating energy use for six selected locations
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Fig. 4. Electrical energy use for six selected locations
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Fig. 5. Electrical energy use of cooling and heating for six selected 
locations
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Fig. 6. Thermal energy use for six selected locations

4.2. Statistical Results

Independent two-sample t-test was conducted to explore the 
difference in the means of the simulation results from Group A which 
used 12 window variables and Group B which used 6 window 
variables. The sample size of Group A and Group B is 120 (n=120) and 
80 (n=80), respectively. The sample size was determined as 
recommended by Latin Hypercube Sampling method which uses 10 
times the number of variables [17].

For statistical analysis, the null hypothesis is that there is no 
difference between the means of two simulation groups. Table 4. shows 
the results of t-test for annual cooling and heating energy use. As shown 
in Table 4., the difference in annual cooling and heating energy use 
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between the two groups is not statistically significant at 95% 
confidence level. Therefore, the null hypothesis fails to be rejected 
because the p-value is larger than 0.05. This results mean that even 
though the simulations are performed using less number of window 
variables, it can have similar accuracy to simulations using higher 
number of window variables. 

Location
Mean

t pGroup A
(n=120)

Group B
(n=80)

Cooling Energy Use (kWh/year)
MN 1424.1 1437.1 -.165 .869
IL 1679.4 1690.0 -.127 .899
GA 3840.1 3850.4 -.074 .941
TX 6031.4 6049.8 -.104 .917
AZ 10518.0 10548.3 -.103 .918
CA 1183.2 1200.2 -.205 .838

Heating Energy Use (kWh/year)

MN 44266
(1510.4)8)

44492
(1518.1) -.200 .841

IL 35069
(1196.5)

35182
(1200.4) -.108 .914

GA 11076
(377.9)

11304
(385.7) -.459 .647

TX 4205
(143.5)

4361
(148.8) -.641 .523

AZ 1447
(49.4)

1655
(56.5) -1.378 .171

CA 2090
(71.3)

2414
(82.4) -1.474 .143

Table 4. T-test results between group A and group B of the Six 
Selected Locations

Regression analysis is also performed to investigate which group of 
data better predicts annual cooling and annual heating energy use. For 
the regression model, the enter method was used, which all independent 
variables are simultaneously entered into the regression model. This 
method is an appropriate method for analyzing the small numbers of 
independent variables or when the researcher does not know which 
independent variables can yield the best regression equation [18]. 

Since this research investigates the effect of all the variables used in 
this study and the number of variables is relatively small, the enter 
method was considered appropriate for the multivariate regression 
modeling. Table 5. shows the adjusted R2 which indicates how closely  
data such as WWRs, SHGC and U-value can explain annual cooling 
and annual heating energy use. It was found that the overall regression 
models show a good fit. The multiple linear regression in each location 
yields an adjusted R2 from 0.932 to 0.960 in Group A and from 0.918 
and 0.966 in Group B for annual cooling energy. The regression for 
annual heating energy yields an adjusted R2 from 0.798 to 0.838 in 
Group A and from 0.896 to 0.944 in Group B. The average adjusted R2 
for both cooling and heating energy is 0.886 for Group A and 0.933 for 
Group B. Therefore, the regression model using Group B is selected to 
investigate the effect of each variable on energy use. In addition, the 
value of Durbin-Watson in all regression models is close to 2, which 

8) Number in the parenthesis indicates the value in Therms/year.

means that there is no auto-correlation between data.

 Location
Group A Group B

Adjusted 
R Square

Durbin-
Watson

Adjusted  
R Square

Durbin-
Watson

Cooling 
Energy Use

MN 0.956 2.068 0.927 1.775
IL 0.950 1.804 0.931 1.768
GA 0.954 2.043 0.942 1.823
TX 0.956 2.047 0.950 1.873
AZ 0.960 2.044 0.966 1.996
CA 0.932 1.967 0.918 1.700

Heating 
Energy Use

MN 0.838 1.951 0.944 1.749
IL 0.832 1.967 0.944 1.771
GA 0.818 1.951 0.941 1.782
TX 0.821 1.967 0.936 1.760
AZ 0.811 1.927 0.898 1.918
CA 0.798 1.889 0.896 1.967

Table 5. Results of adjusted R square of group A and group B of 
the Six Selected Locations

Tables 6. and 7. describe the influence of each variable on annual 
cooling and annual heating energy use in six different locations.

Standardized Regression Coefficient (SRC) is used to represent 
relative contributions of each variable to annual cooling and heating 
energy variability in each region. T- and p-value are also presented to 
check statistically significance of each variable.

5. Discussions

5.1. Window Design Variables for Cooling Energy

It was found that window design variable that has the most important 
effect on cooling energy usage is SHGC which is consistent across all 
locations according to the SRC in Table 6. For example, California 
shows the highest sensitivity to SHGC followed closely by Illinois. On 
the other hand, the U-value of the window is not statistically significant 
(p>0.05) in relatively cold regions such as Minnesota and Illinois. 
U-value in relatively hot climate zone such as Texas and Arizona is 
statistically significant (p<0.05), but it has less impact on the annual 
cooling energy use than other variables. Therefore, in Texas and 
Arizona where the cooling load is relatively high, SHGC is more 
important than the U-value in window selection. Not surprisingly, it has 
been found that as WWR increases, the cooling energy consumption 
increases. The SRCs were also observed to determine which orientation 
of WWR has more influence on cooling energy consumption. It is 
found that WWR in the west and east has a greater effect on the use of 
cooling energy than the north and south. This is due to excessive 
amount of solar radiation at low angle coming from the east and west 
sides in the morning and afternoon during summer. Therefore, it is 
appropriate to select a low SGHC window with a smaller window area 
in the east and west sides specially in hot climate zone (cooling 
dominated region) in order to reduce cooling energy.
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Location Independent 
Variables

Standardized 
Coefficients (SRC) t Sig.

MN

SHGC .757 23.696 .000
WWR West .436 13.585 .000
WWR East .385 11.645 .000

WWR South .252 7.922 .000
WWR North .113 3.446 .001

U-value -.012 -.384 .702

IL

SHGC .762 24.465 .000
WWR West .411 13.135 .000
WWR East .405 12.594 .000

WWR South .250 8.050 .000
WWR North .126 3.917 .000

U-value -.022 -.694 .490

GA

SHGC .756 26.373 .000
WWR West .422 14.634 .000
WWR East .421 14.205 .000

WWR South .247 8.625 .000
WWR North .146 4.952 .000

U-value .041 1.447 .152

TX

SHGC .736 27.874 .000
WWR East .417 15.295 .000
WWR West .417 15.715 .000
WWR South .295 11.196 .000
WWR North .161 5.935 .000

U-value .104 3.936 .000

AZ

SHGC .662 30.153 .000
WWR West .461 20.911 .000
WWR East .423 18.647 .000

WWR South .309 14.106 .000
U-value .290 13.223 .000

WWR North .162 7.183 .000

CA

SHGC .776 22.873 .000
WWR West .387 11.352 .000
WWR East .282 8.056 .000

WWR South .209 6.165 .000
WWR North .045 1.281 .204

U-value -.244 -7.192 .000

Table 6. Standardized Regression Coefficient (SRC) of each variable 
for annual cooling energy use in six locations.

5.2. Window Design Variables for Heating Energy

As shown in Table 7., it was found that U-value is the most 
influential on the amount of heating energy usage. Furthermore, both 
SHGC and U-value are statistically significant (p<0.05), and these two 
variables affect the heating energy demands more than other WWRs. 
This results show different patterns from the results of cooling energy 
use. For cold climate zones (heating dominated region) such as 
Minneapolis and Illinois, high SHGC and low U-value should be 
considered more than other variables to reduce the heating energy 
demands. 

For WWR, window areas in the north and west are more influential 
to the heating energy use than other orientations. It is because there is 
less opportunity to receive solar radiation than other orientations of 
windows while there is more conduction heat loss due to large window 
areas at the same time. This results in more heating energy 
consumption because of large window areas in the north and west sides. 

Location Independent 
Variables

Standardized 
Coefficients (SRC) t Sig.

MN

U-value .800 28.571 .000
WWR North .236 8.191 .000
WWR West .139 4.942 .000
WWR East .114 3.935 .000

WWR South .041 1.450 .151
SHGC -.296 -10.559 .000

IL

U-value .799 28.426 .000
WWR North .231 7.984 .000
WWR West .143 5.053 .000
WWR East .109 3.751 .000

WWR South .051 1.809 .075
SHGC -.301 -10.685 .000

GA

U-value .766 26.678 .000
WWR North .233 7.846 .000
WWR West .120 4.145 .000
WWR East .075 2.533 .013

WWR South -.015 -.521 .604
SHGC -.378 -13.147 .000

TX

U-value .764 25.517 .000
WWR North .234 7.584 .000
WWR West .125 4.141 .000
WWR East .092 2.980 .004

WWR South .014 .471 .639
SHGC -.371 -12.376 .000

AZ

U-value .696 18.404 .000
WWR North .268 6.875 .000
WWR West .126 3.320 .001
WWR East .087 2.229 .029

WWR South -.030 -.790 .432
SHGC -.414 -10.934 .000

CA

U-value .680 17.831 .000
WWR North .230 5.848 .000
WWR West .074 1.923 .058
WWR East .044 1.121 .266

WWR South -.013 -.336 .738
SHGC -.484 -12.682 .000

Table 7. Standardized Regression Coefficient (SRC) of each variable 
for annual heating energy use in six locations.

It is also found that WWRs on the south side is not statistically 
significant (p>0.05) for all locations. For the window layout, 
consideration of WWR of the north, west and east is more important 
than that of the south to reduce the heating energy use.

6. Conclusion

Building simulation can accurately predict building energy use, but 
it is difficult to be utilized by architects and general contractors because 
it requires higher level of engineering expertise. The purpose of this 
study is to present the data that can be referenced by the architects and 
general contractors that investigates the effect of window properties 
including SHGC and U-value, and WWRs on the energy consumptions 
in six climate regions representing the United States.

In order to obtain the data for the statistical analysis, the extensive 
numbers of simulations using the average size of the residence in the 
U.S. were performed with BEopt simulation program. For simulations, 
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two groups with different numbers of window variables were used.
To study the optimum numbers of window variables, t-test was 

performed using the results from two groups. 
T-test results show that the difference in simulations results between 

the two groups are not statistically significant. Then, a regression 
model of two groups is developed to identify a better fit to the 
simulation results. All adjusted R2 values obtained from the 
multivariate regressions show a good fit to the simulation results. 
However, the average adjusted R2 is 0.886 for Group A and 0.933 for 
Group B, so standardized regression coefficients (SRCs) generated in 
Group B are used for sensitivity analysis. This results suggest that the 
regression model can be developed using a reduced numbers of 
variables, and also can be useful for the architect and general contractor 
for window design considerations. 

According to SRCs from the regression, the most sensitive design 
parameters for cooling energy use are SHGC and west and south facing 
windows, while U-value and north and west facing windows are the 
most sensitive window parameters for heating energy use.

The results of this research considered the relative importance of 
window design variables based on different climate regions for single 
family residence, and have limitations for builders to apply to have 
window designs specifically. Future ongoing research needs to perform 
in-depth analysis to provide detailed range of appropriate window 
thermal properties varying window area and construction costs based 
on climate regions. This combination of results can provide builders 
with guideline to consider better window design decisions.
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